Available online at www.sciencedirect.com _—
SCIENCE@DlREc-r@ Journal()f
BANKING &

» FINANCE
ELSEVIER Journal of Banking & Finance 28 (2004) 1987-2013 E e

www.elsevier.com/locate/econbase

Optimal consumption and investment
strategies with stochastic interest rates

Claus Munk ?, Carsten Serensen °*

& Department of Accounting and Finance, University of Southern Denmark, Odense, Denmark
® Department of Finance, Copenhagen Business School, Solbjerg Plads 3, DK-2000 Frederiksberg, Denmark

Received 24 December 2001; accepted 15 July 2003
Auvailable online 18 December 2003

Abstract

We characterize the solution to the consumption and investment problem of a power utility
investor in a continuous-time dynamically complete market with stochastic changes in the
opportunity set. Under stochastic interest rates the investor optimally hedges against changes
in the term structure of interest rates by investing in a coupon bond, or portfolio of bonds,
with a payment schedule that equals the forward-expected (i.e. certainty equivalent) consump-
tion pattern. Numerical experiments with two different specifications of the term structure
dynamics (the Vasicek model and a three-factor non-Markovian Heath-Jarrow—Morton
model) suggest that the hedge portfolio is more sensitive to the form of the term structure than
to the dynamics of interest rates.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Since the pathbreaking papers of Merton (1969, 1971, 1973) it has been recognized
that long-term investors want to hedge stochastic changes in investment opportunities,
such as changes in interest rates, excess returns, volatilities, and inflation rates. The
main contribution of this paper is to enhance the understanding of how investors with
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constant relative risk aversion (CRRA) preferences for consumption (and, possibly,
terminal wealth) should optimally hedge interest rate risk. We demonstrate that the
optimal hedge against changes in interest rates is obtained by investing in a coupon
bond, or portfolio of bonds, with a payment schedule that precisely equals the cer-
tainty equivalents of the future optimal consumption rates. Furthermore, we study
the importance for interest rate hedging of both the current form and the dynamics
of the term structure. In a numerical example we compare the solutions for a standard
one-factor Vasicek and a three-factor model where the term structure can exhibit three
kinds of changes: a parallel shift, a slope change, and a curvature change. Our findings
suggest that the form of the initial term structure is of crucial importance for the opti-
mal future consumption plan and, hence, important for the relevant interest rate
hedge, while the specific dynamics of the term structure is of minor importance.

As shown by Heath et al. (1992), any dynamic interest rate model is fully specified
by the current term structure and the forward rate volatilities. Therefore, the Heath—
Jarrow—Morton (HIJM) modeling framework is natural for the purpose of comparing
the separate effects of the current term structure and the dynamics of the term struc-
ture on the optimal interest rate hedging strategy. The HIM class nests all Markovian
interest rate models, such as the Vasicek model. However, models outside this Mar-
kovian class also frequently arise within the HIM modeling framework. This is, for
example, the case for the three-factor model considered in our numerical example.

Given that we want to compute optimal investment strategies in possibly non-
Markovian models, we first derive a general, exact characterization of both optimal
consumption and portfolio choice in a framework that also allows for non-Markov-
ian dynamics of asset prices and the term structure of interest rates, but requires
dynamically complete markets. This characterization generalizes recent results in
specialized Markovian settings (Liu, 1999; Wachter, 2002a). For the special case
where interest rates have Gaussian, but still potentially non-Markovian, HIM
dynamics, we obtain the explicit solution for the optimal consumption and invest-
ment strategies that we use for studying the impact of the current form and the
dynamics of the term structure on hedging demand. To our knowledge, this paper
provides the first explicit solution to an intertemporal consumption and investment
problem where the dynamics of the opportunity set is non-Markovian and the inves-
tor has non-logarithmic utility.

There has recently been a number of studies of optimal investment strategies with
specific assumptions on the dynamics of interest rates. Brennan and Xia (2000) and
Serensen (1999) consider the investment problem of a CRRA utility investor with
utility from terminal wealth only. They assume complete markets and show that
in the case where the term structure of interest rates is described by a Vasicek-type
model and market prices on risk (and expected excess returns) are constant, the opti-
mal hedge portfolio is the zero-coupon bond that expires at the investment horizon.
This particular result is also obtained as a special case within the framework of this
paper. Liu (1999) provides similar insight using the one-factor square-root model of
Cox et al. (1985).

A few papers have addressed the portfolio problem under stochastic interest rates
for investors with utility over consumption. In a general complete-market setting,
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Wachter (2002b) shows that an infinitely risk-averse agent will only invest in a cou-
pon bond. This result is also a special case of our findings, but we solve for the opti-
mal portfolio for CRRA investors with any level of risk aversion. Both Campbell
and Viceira (2001) and Brennan and Xia (2002) study consumption and portfolio
choice problems in settings with uncertain inflation, where real interest rates follow
a one-factor Vasicek model. While we ignore inflation risk, we allow for more gene-
ral dynamics of interest rates. '

The general modeling of the investment opportunity set in this paper nests the
Markovian models studied in the above-mentioned papers. Furthermore, we explic-
itly link the optimal hedge portfolio to the optimal consumption pattern of the inves-
tor. In addition, we study how sensitive the optimal hedge against interest rate risk is
to the current form of the term structure and to the dynamics of the term structure of
interest rates.

The rest of the paper is organized as follows. In Section 2 we set up the general
continuous-time consumption and investment problem in a dynamically complete
market and provide a general characterization of the optimal consumption and
investment policy for a CRRA investor in a possibly non-Markovian setting. In Sec-
tion 3 we derive explicit results showing how to hedge against changes in the term
structure of interest rates using coupon bonds in a specialized HIM multi-factor
Gaussian term structure setting. In Section 4 we consider two specific numerical
examples based on the Vasicek model and an HIM three-factor model. We compare
the hedge bonds in the two examples for different levels of risk aversion and different
forms of the initial term structure of interest rates. Section 5 concludes. >

2. Portfolio choice with general dynamics in investment opportunities

We consider a frictionless economy where the dynamics is generated by a d-dimen-
sional Wiener process, w = (wy,...,w,), defined on a probability space (Q, 7, P).
F ={Z,:t> 0} denotes the standard filtration of w and, formally, (Q, 7 ,F,P) is
the basic model for uncertainty and information arrival in the following.

2.1. Preferences

We will consider the investment problem of an expected utility maximizing inves-
tor with a time-separable constant relative risk aversion utility function given by

K.EOUOTUI(C,,I)dz] + (1= K) - Eo[Us()], ()

! Inflation can be introduced along the same lines in the set-up of this paper in which case the relevant
bond for hedging purposes would be an indexed bond with payments that in real terms match the forward-
expected consumption pattern.

2 Proofs and detailed derivations are contained in an appendix which is available from the authors by
request.
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and where f is a constant subjective time discount rate and y is a constant relative
risk aversion parameter. The preference parameter K controls the relative weight of
intermediate consumption, C,, and terminal wealth, W7, in the agent’s utility func-
tion. The special case where 7 = 1 is the logarithmic utility case: U, (C,t) = e #log C
and U,(W) = e T logW.

2.2. Investment assets
The agent can invest in a set of financial securities. One of these financial assets is

assumed to be an “instantaneously’ risk-free bank account which has a return equal
to the short-term interest rate »,. In addition, the agent can invest in d risky assets

with prices described by the vector V; = (Vy,,..., Vd,)'. The price dynamics of the
risky assets (cum dividend) is given by
dv, = diag(¥))[(r,14 + 0,4,) dt + o,dw/], (2)

where 4, is an R%valued stochastic process of market prices of risk, o, is an R4
valued stochastic process of volatilities, 1, is a d-dimensional vector of ones, and
diag(7;) is a (d x d)-dimensional matrix with 7] in the diagonal and zeros off the
diagonal. It is assumed that ¢ has full rank d implying that markets are dynamically
complete (cf. Duffie and Huang, 1985). As a consequence of markets being
dynamically complete, the pricing kernel (or state-price deflator) is uniquely deter-
mined and given by (see, e.g., Duffie, 1996, Chapter 6)

t t t
gt:exp{—/ rsds—-/ i’qdw_y—l/ ||)LS||2ds}7 t=0, (3)
0 0o 2 Jo

or, equivalently, in differential form,
d¢, = ¢ [-rdt — 2,dw], (o =1. (4)

The present value of any stochastic payoff, X, paid at some future time point s can be
determined by evaluating the pricing-kernel-weighted payoff. In particular, we have

PV = 5| (x| = poEW, (5)

t
where P,(s) is the time ¢ price on a zero-coupon bond that expires at time s. The last
equality defines the so-called certainty-equivalent or forward-expected payof, E ‘X
see, e.g., Jamshidian (1987, 1989) and Geman (1989) who introduce the notion of the
forward risk-neutral martingale measure, as being distinct from the usual risk-
neutral martingale measure in the context of interest rate models.
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2.3. The problem and the general solution

Let 7, be an R?-valued process describing the fractions of wealth that the agent
allocates into the d different risky assets. The wealth of the agent then evolves
according to

dw, = [(r, + m;e, /) W; — C]dt + W,m,0, dw,. (6)

The agent’s problem is to choose a dynamic consumption strategy, C;, and portfolio
policy, 7, in order to maximize the expected utility in (1). This problem has tradi-
tionally been addressed and solved by using a dynamic programming approach, cf.
Merton (1969, 1971, 1973). The main idea of the martingale solution approach
suggested and formalized by Cox and Huang (1989, 1991) and Karatzas et al. (1987)
is to alternatively consider the static problem

sup K-Eo{/or Ul(Ct,t)dt] + (1 = K) - Eo[U>(Wr)] (7)

{C,AWT}

subject to

a [ (2w ()] o

In principle, the problem is to maximize expected utility subject to the budget
constraint (8), which states that the present value of the consumption stream and
terminal wealth cannot exceed the agent’s current wealth. As shown by Cox and
Huang (1989, 1991) and Karatzas et al. (1987), the solution to this problem also
provides the solution to the dynamic problem of choosing the optimal consumption
strategy and portfolio policy. The value function, or indirect utility, J;, from the
optimization problem is the maximum expected remaining life-time utility which can
be achieved by the optimal consumption and terminal wealth plan following any
time point ¢, 0 <t < T.

The problem in (7) and (8) is a standard Lagrangian optimization problem which
can be solved using the Saddle Point Theorem (see, e.g., Duffie, 1996, pp. 205-208)
to determine the optimal consumption process, C,, and terminal wealth, W;. Thus,
under the specific CRRA utility assumption in (1), the optimal consumption plan
given information available at time ¢ takes the form *

1

C, :%K%e%f)(é) 7, 0<r<s«<T, 9)
O, G

3 The details in this derivation are contained in the appendix which is available from the authors by
request.
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where the (investor-specific) stochastic process Q; is defined by

T =l =
it [ e tg (&) ‘:_T> "
o [[ts (%) @ w

Note that the current consumption rate at time ¢ is given by C, = (W;/ Q,)K% and,
hence, that Q, describes the wealth-to-consumption ratio. As formalized in Propo-
sition 1 below, Q, is also crucial for determining how to hedge against changes in the
opportunity set.

While the consumption policy is usually given explicitly by solving (7) and (8), as
in (9), the optimal portfolio policy is only given implicitly as the policy which repli-
cates the optimal terminal wealth from the above problem and in accordance with
(6). The existence and uniqueness of such a portfolio policy follow from the Martin-
gale Representation Theorem (see, e.g., Duffie, 1996). 4

For log-investors (y = 1) it is well known that the optimal portfolio is the growth-
optimal portfolio, but in order to derive an explicit expression for the optimal port-
folio for other investors it is generally recognized that the price dynamics must be
specialized. Cox and Huang (1989) show that when the state-price deflator and
the risky asset prices constitute a Markovian system, the optimal investment strategy
can be represented in terms of the solution of a linear second-order partial differen-
tial equation. On the other hand, the following proposition provides a closed-form
expression for the optimal investment strategy for a power utility investor in a gen-
eral possibly non-Markovian complete market setting for a CRRA investor.

Since Q;, as defined in (10), is a positive stochastic process adapted to the filtration
generated by wy, it follows from the Martingale Representation Theorem, that the
dynamics of Q, can be described by

dQ, = Oi[up, dt + ap dw)] (11)

for some drift process u,, and some volatility process ay,. The precise forms of
and g, depend on the specific assumptions on the pricing kernel and, subsequently,
we will consider such specific examples and apply the following general proposition.

ds + (1 — K)%e_g(T_‘)E,

Proposition 1. The value function of the general problem in (7) and (8) has the form
oW - A

J,
t 17))

, (12)

where
K r-0) (r-0)
A(t):E(l—e )+ (1 —K)e
and Q; is defined in Eq. (10).
The optimal consumption choice and the optimal portfolio policy at time t are given
by

* The optimal investment strategy can be represented rather abstractly in complete markets in terms of
stochastic integrals of Malliavin derivatives by the Clark—Ocone formula (cf. Ocone and Karatzas, 1991).
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Proof. The proof is available from the authors upon request. [

Proposition 1 states the optimal consumption and investment strategies in our set-
ting that allows for general, possibly non-Markovian, shifts in the investment oppor-
tunity set. However, a special case is the Markovian setting where the shifts in
investment opportunities are governed by a Markov diffusion process x with dynam-
ics

dx, = pu,(x;, ) dt + g (x;, 1) dw,.

In this case, the basic optimization problem considered in this paper could alter-
natively be solved using a traditional dynamic programming approach, and it is well
known that some (unknown) function Q(x;,?) exists such that J; is given as in (12)
with Q, replaced by QO(x;,¢) (see, e.g., Ingersoll, 1987). In this case the character-
ization of optimal consumption in (13) follows from the so-called envelope condition
and, furthermore, it follows directly by Ito’s lemma that o, in (14) can be charac-
terized on the form ax(xt,t)%—f /O(x,,t). Proposition 1 provides an explicit charac-
terization of the function Q and, in particular, extends the result so that it also
applies for non-Markovian market settings where a dynamic programming approach
does not directly apply.

As in Merton (1971), the portfolio policy can be decomposed into a speculative
portfolio (the first term in (14)) and a hedge portfolio that describes how the investor
should optimally hedge against changes in the investment opportunity set (the last
term in (14)). The investor must thus form a hedge portfolio that basically mimics
the dynamics of Q, and, hence, Q, reflects everything of importance for how to hedge
against changes in the investment opportunity set. For a given investor it can be in-
ferred from (10) that only processes included in the description of (moments of) the
pricing kernel stated in (3) are relevant for intertemporal hedging purposes. In gen-
eral, the investor should alone consider hedging against changes in interest rates and
changes in prices on risk in the economy while changes in, say, volatilities on mar-
keted securities should be of no concern in our complete market setting.

It is instructive to consider two special cases: the log-utility case (y = 1) and the
case of an infinitely risk-averse investor (y = co). ° The log-utility investor does
not hedge against changes in the opportunity set at all (the last term in (14) vanishes
as y — 1) and the optimal consumption rate is C, = KW, /A(¢), i.e. a time-varying, but

5 Formally, the results for an infinitely risk averse investor are defined as the limiting results of
Proposition 1 as y — oo.
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deterministic, fraction of wealth. The infinitely risk-averse investor has no specula-
tive demand for securities at all (the first term in (14) vanishes as y — o). If this
investor has utility from both consumption and terminal wealth, the Q-process re-
duces to

) =/ P.s)ds + P(T). (13)

Hence, the hedge portfolio is an annuity bond. (In the special case where the investor
has utility from terminal wealth only, i.e. K = 0, the hedge portfolio is a zero-coupon
bond that expires at the investment horizon.) According to (9), the optimal con-
sumption strategy is in this case constant, C, = W,/Q, = Wy/Qo, and the optimal
consumption strategy is thus basically implemented by using the certain payments on
the annuity bond for consumption. ¢

3. Hedging changes in interest rates

In the rest of the paper we focus on how to hedge changes in interest rates. In this
section we will provide an explicit solution to the consumption and investment
choice problem when interest rates evolve according to a HIM model. 7 This is an
application of Proposition 1. Furthermore, we demonstrate a close link between
the hedging demand and the optimal consumption stream.

For convenience and clarity we separate the investment assets into stocks and
bonds in the following. Formally, we split the d-dimensional Wiener process gener-
ating the financial asset returns as w = (wg, ws), where wp is of dimension k and wy is
of dimension / = d — k. We assume that the dynamics of the term structure of inter-
est rates, and, hence, the dynamics of prices on bonds and other term structure deriv-
atives traded at the bond market, are affected only by wi. The dynamics of the stock
prices may depend on both wp and wg which allow for correlation between stocks
and term structure derivatives. Specifically, the investor can invest in the “instanta-
neously” risk-free bank account, £ term-structure derivatives, and / stocks. The asset
price dynamics is given by

dB, = diag(B,)[(r:1x + 0 is) dt + 65 dwg] (16)
and
ds, = diag(S,)[(r,l; + ¢g,) dt 4 051, dwg, + o5 dWSt]a (17)

where o3, g1, and o5, are matrix valued processes of dimension &k x &, [ x k, and
I x I, respectively. Again, o and og, are assumed non-singular so that markets are
complete. Changes in the returns of the term structure derivatives and the stocks are

© An annuity bond is a coupon bond where the certain cash flows (coupon + principal repayment) from
the bond are the same throughout the finite life of the bond.

7 The HIM approach is, to our knowledge, the most general interest rate modeling framework, and any
term structure model that does not allow for arbitrage can be represented in a HIM setting.
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correlated with & x / covariance matrix op0%,,. The market price of risk process 4
(which is not dependent on the particular set of assets chosen) has the form

i _ ;“Bt ’
= (%)
where

Asi = G505, — Ts3, 05101
Note that we have introduced the R’-valued stochastic process ¢y
(= 05148 + 0s2/s:), which can be interpreted as the expected excess return on the
stocks.

More specifically, we assume that the dynamics of the term structure of interest
rates can be described by a k-factor model of the HIM class introduced by Heath
et al. (1992). For any maturity date t the dynamics of the t-maturity instantaneous
forward rate is

70 = Al + [ afs,7)ds + / (5, dwa, (18)

where o/(-,7) is an R*-valued deterministic function and fy(z) is the t-maturity
forward rate observed initially at time 0. The short-term interest rate is , = f;(¢). As
a no-arbitrage drift restriction we have that

ot = 0,,5) (a(0) + [ s,

so that one only has to specify the initial term structure of forward rates and the
volatility structure a(, 7).

Among the many term-structure derivatives, we focus on default-free bonds. The
dynamics of the price (1) = exp(— [ f;(s)ds) of the zero-coupon bond maturing at
time 7 is given by

dP (1) = P(2)[(r, + op(t,7) 25(2)) dt + ap(t, 7) dwg], (19)

where ap(t,7) = — f; o,(t,u)du. For later use we will also consider a bond paying a
continuous coupon of k(¢) up to time 7 and a lump sum payment of k(7 at time 7.
The time ¢ price of such a bond is

= | K(5)P(5)ds + K(T)BAT).

Applying a Leibnitz-type rule for stochastic processes (which in the specific context is
formally stated and proved in the appendix which is available from the authors by
request), it is seen that the coupon bond price must evolve according to

dB:)le = —k(t) dt +prn (V, —+ 6;3?)" \.B(t))dt —+ U;;:pn dWB, s
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where

[T k(s)P(s)ap(t,5)ds + k(T)P(T)ap(1, T) .

p (20)
ST k(s)P.(s) ds + k(T)RAT)

GB::D“ =
Our specific results on how to hedge against changes in interest rates, as stated in
Proposition 2, are based on the following assumption.

Assumption 1. The market price of risk process 4, = A(¢) and the forward rate vol-
atilities o/(¢,7) are deterministic functions of time.

The implications of the assumption that market prices of risk and forward rate
volatilities are deterministic are important since we only allow interest rates to
change stochastically and, hence, there are no reasons to hedge against stochastic
changes in market prices of risk or forward rate volatilities. Also, as a consequence
of Assumption 1 the following analysis is limited to Gaussian models of the term
structure of interest rates. However, note that we do not assume that the diffusion
coefficients o3, o1, and g, of the investment assets are deterministic and, in fact,
they may be described by non-Markovian processes.

Multi-factor Gaussian models are in many respects flexible and thus often used
for derivative pricing since they allow closed-form solution for most European-type
term structure contingent claims (e.g., Amin and Jarrow, 1992; Brace and Musiela,
1994). A shortcoming of Gaussian term structure models, though, is that they are
not able to rule out negative interest rates. The Gaussian assumption also allows
closed-form expressions for optimal investment strategies, as we shall see in the fol-
lowing. Furthermore, it is important to point out that also in Gaussian HIM models,
the short rate process is not necessarily Markovian (as is the case in the HIM three-
factor example considered in a subsequent section). ®

From the assumption that prices of risk and forward rate volatilities are determin-
istic, it follows that the short-term interest rate is normally distributed (Gaussian)
and that the pricing kernel {,, as stated in (3), is lognormally distributed. It is thus
possible to compute in closed form the expectations in the definition of Q, in (10)
and, hence, obtain an analytical expression for Q,. The proof of the following prop-
osition is based on this feature.

Proposition 2. Under Assumption 1, the value function and the optimal consumption
strategy are given by (12) and (13) in Proposition 1, where in this case

0 = / Z(s)ds + Z/(T) (21)

8 In fact, the short rate is only Markovian if o/ (¢,7) can be separated as o,(z,7) = G(t)H(t), where H is
a real-valued continuously differentiable function that never changes sign and G is an Rf-valued
continuously differentiable function (cf. Carverhill, 1994).
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with
Zi(s) = I(l(P,(s));1 exp { —g(s —1)+ lzyzyg(t,s)}, 0<t<s < T, (22)
2(0) = (1 - ke en{ - Lr -0+ 1 g0} 23)
and

g(t,s) :/ ||/1(u)|\2du+/ llop(u, )| du —2/ Jp(u) op(u,s)du. (24)
t t t
The optimal portfolio policy at time t is described by

m= (D)o (e (7). 25

where agem is the volatility vector of a bond, as defined in Eq. (20), which pays con-
tinuous coupon according to

k) = Bc
—c 2o ton{ -Lo-0+ o) osis<r o

and has a terminal lump sum payment at time T of
K(T) = E[ ]

—-rf gy e - L -n+ - e} @)

O

Proof. The proof is available from the authors by request. [

Proposition 2 provides an explicit expression for the optimal investment strategy
with possibly non-Markovian and multi-factor dynamics of interest rates. The opti-
mal portfolio policy in (25) is described by two terms: the first term describes the
usual speculative demand for risky assets while the second term describes the hedg-
ing demand for risky assets. The form of the hedging term is such that by choosing
risky asset weights according to this term (and the residual invested in the risk-free
bank account), one obtains a bond portfolio that basically replicates a specific cou-
pon bond. This specific coupon bond will be referred to as the /edge bond in the fol-
lowing. In particular, Proposition 2 shows that with utility from intermediate
consumption this hedge bond is equivalent to a coupon bond with coupon rates
equal to the certainty equivalents of optimally planned future consumption rates.

In the special case of utility from terminal wealth only (corresponding to K = 0),
the relevant bond for hedging reduces to a zero-coupon bond that expires at the
investment horizon. This is similar to the insight obtained in specialized Vasicek set-
tings by Brennan and Xia (2000) and Serensen (1999). A zero-coupon bond seems an
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intuitively appealing instrument for hedging changes in interest rates in the case of
utility from terminal wealth only since this security has a certain payment at the
investment horizon irrespectively of how interest rates evolve. Likewise, in the case
including utility of intermediate consumption the suggested coupon bond seems a
reasonable instrument for hedging shifts in interest rates in the sense that the certain
payments on the bond match the currently planned future consumption expenditure
profile irrespectively of how interest rates evolve.

The optimal portfolio policy described in (25) can in fact be implemented by allo-
cating a fraction of wealth (1/y) into the speculative portfolio and a fraction of wealth
(1 — 1/y) into the appropriate hedge bond. In order to see this, let 7, be the R*!-val-
ued vector process describing the augmented optimal portfolio weights where the frac-
tion of wealth invested in the risky assets, 7;, are included as the first d-entries while
the fraction of wealth invested in the risk-free bank account is included as the
(d 4+ 1)th entry. Note that by inserting the optimal risky asset portfolio weights in
(25), the optimal augmented portfolio policy can be obtained in the form

= (1 —ni;n,>
o) (o))" 5"
= (0T )+ (5) 111,<a;>< 22> -7

The first term in (28) describes the augmented optimal portfolio weights in the log-
utility case where y = 1. This portfolio is usually referred to as the growth-optimal
portfolio or, equivalently, the speculative portfolio. On the other hand, the last term
in (28) describes the augmented portfolio weights needed to implement the appro-
priate hedge bond.

According to Proposition 2, the specific dynamics of the term structure of interest
rates is of importance for how to hedge against changes in the opportunity set only
through its effect on the optimal forward-expected consumption pattern. In the fol-
lowing examples, we will focus on the determinants of the optimal forward-expected
consumption patterns and, in particular, our focus is on whether the current form of
the term structure or the dynamics of the term structure is of crucial importance for
the optimal forward-expected consumption pattern. In this context it can be noted
that, even in the general setting of Section 2, only the form of the term structure mat-
ters for the optimal forward-expected consumption patterns for the benchmark cases
of log-investors and infinitely risk averse investors, while the term structure dynam-
ics is irrelevant. For infinite risk aversion, this follows from the fact that the optimal
consumption rate is constant and equal to W,;/Q, where Q, describes the price of an
annuity bond which is fully determined by the prevailing term structure at time ¢, cf.
the description of Q, in (15) for this special case. For log utility, it can be shown that
the forward-expected optimal consumption rate is

Elc]) = Wz%)m@))”e‘ﬁ“"% O<i<s<T, )
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with A(¢) being defined in Proposition 1. The forward-expected terminal wealth at
time 7 is given by a similar expression which is also fully determined by the current
term structure of interest rates, as reflected in zero-coupon bond prices P,(s), and not
influenced by the parameters describing the term structure dynamics.

4. Specific examples

In this section we consider two specific examples of interest rate dynamics in the
set-up of the previous section. The first example is based on the term structure
dynamics from the Vasicek (1977) model while the second example is based on a flex-
ible three-factor HIM term structure model where the term structure can exhibit
three different kinds of changes: a parallel level change, a slope change, or a curva-
ture change. As shown by Heath et al. (1992), any dynamic interest rate model is
fully specified by the current form of the term structure and the forward rate vola-
tilities. Hence, the HIM framework is natural for the purpose of comparing the sep-
arate effects of the current form of the term structure and the dynamics of the term
structure on the optimal interest rate hedging strategy. In our specific examples the
initial term structures are thus chosen to be identical across the two examples, i.e. the
initial form of the term structure curve in the three-factor HIM term structure model
is adopted from the Vasicek example. We compute the optimal strategies in both
examples using empirically reasonable parameter values. For various degrees of risk
aversion and for different forms of the initial term structure we compare the relevant
hedge bond under Vasicek dynamics and the relevant hedge bond under the three-
factor HIM dynamics. Our results below suggest that the optimal payment schedule
on the hedge bond is very sensitive to the form of the initial term structure of interest
rates while the optimal payment schedule on the hedge bond is insensitive to the
dynamics of interest rates over time when the current term structure is held fixed.

4.1. Vasicek example

In the following example we allow for utility from both intermediate consumption
and terminal wealth by setting the preference parameter K equal to 1 in the specifi-
cation of the utility function in (1). This implies that utility from intermediate con-
sumption and utility from terminal wealth are weighted equally. The set-up for
investment assets in the following example is basically as in Brennan and Xia
(2000) and Serensen (1999), but they only consider utility from terminal wealth.
The agent can invest in a single stock and a single bond as well as the “instanta-
neously” risk-free bank account. The term structure dynamics is described by the
one-factor term structure model originally suggested by Vasicek (1977). In particu-
lar, the dynamics of the short-term risk-free interest rate is described by an
Ornstein—Uhlenbeck process of the form

dr, = k(0 — r,)dt — o, dwg,, (30)
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where the parameter 6 describes the long-run level for the short-term interest rate, x
is a mean-reversion parameter that determines the strength of tendency to the long-
run level, and the parameter o, describes the interest rate volatility. Besides the
parameters describing the interest rate dynamics, the parameter denoted /5 in the
context of Section 3 determines the price of interest rate risk.

Using standard no-arbitrage arguments, one can solve for prices on interest rate
contingent claims in the Vasicek model. The possible forms of the term structure of
forward interest rates can thus be determined by solving for prices on zero-coupon
bonds. The t-maturity forward rate at time ¢ in the Vasicek model is given by

2

Ji®) = & (1= ) 4 2L b — 1), (31)
where
Apo, &>
00 — 0 - - )
4 + K 252

b(s) = %(1 —e™).

The dynamics of the z-maturity forward rate can be determined from (31) and (30)
and an application of Ito’s lemma. In particular, it is seen that the forward rate
volatility structure in this example has the form o/(¢,7) = —g,e """, Within the
HIM framework of Section 3, this volatility structure and an initial term structure of
forward rates of the form in (31) provide a complete specification of the Vasicek
(1977) term structure model.

The agent can invest in a single stock as well as bonds and the bank account. In
the specific case of a one-factor interest rate model it is sufficient that the agent can
invest in a single bond besides the stock and the bank account in order to implement
the complete-market optimal solution. The price process of the single stock is de-
scribed in Eq. (17) where in this case o5 and gy, are scalars (i.e. of dimension 1x1).

The specific parameter values used in the following numerical example are chosen
as follows:

0=0.04, k=015 o =0.015,
051 — 00625, 05y — 024217 (32)
@s =0.05, 45 =0.19365, /3 =0.05.

In particular, the parameters «, 0, and ¢,, which describe the interest rate dynamics,
are chosen so that they are close to those obtained by Chan et al. (1992) for the
Vasicek interest rate process. The parameters for the stock process are chosen so that
the expected excess return on the stock is ¢y = 5%, the volatility of the stock is
constant 25% (= (a3, 4+ 0%,)"?), and the “instantaneous” correlation coefficient
between the stock and the short-term interest rate is constant —25% (and, hence, the
correlation between the stock and any bond in the one-factor Vasicek model is 25%).
The 5% expected rate of excess return on the stock is below the 8.4% point estimate
suggested by the Ibbotson Associates 1926-1994 historical returns data on stocks
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(see, e.g., Brealey and Myers, 1996, Chapter 7, Table 7-1). Though, as pointed out by
Brown et al. (1995), the use of realized mean returns in this context is likely to in-
volve a survival bias which could be as high as 400 basis points per year.

The 25% volatility of the stock is slightly higher than the 20.2% historical volatil-
ity estimate on the S&P 500 index based on the Ibbotson Associates returns data
(see, e.g., Brealey and Myers, 1996, Chapter 7) but well in accordance with, say, vol-
atilities on individual stocks and less diversified portfolios of stocks. Furthermore,
the 25% positive correlation between the stock and bonds is consistent with the
empirical results in e.g. Campbell (1987), Fama and French (1989), and Shiller
and Beltratti (1992). Finally, the risk premia on bonds, 7z = 0.05, implies that e.g.
the expected excess return on a 10-year zero-coupon bond in the Vasicek model is
0.39%. °

The above parameter values imply that an agent with logarithmic utility invests an
80% fraction of wealth in the stock, a fraction of 0% in bonds, and the residual 20%
of wealth in the bank account. Hence, the speculative portfolio under the spe-
cific parameter values involve no speculative demand for bonds. Agents with non-
logarithmic utility, however, want to invest in a bond, or bond portfolio, that has
payoffs that equal their forward-expected consumption pattern in order to hedge
against changes in the opportunity set, as described in Proposition 2. In line with
the discussion after Proposition 2, the appropriate investor specific bond in this res-
pect is referred to as the hedge bond. As formalized in (28), the infinitely risk averse
investors invest 100% in the hedge bond while e.g. an investor with constant relative
risk aversion, y, equal to 2 will invest 50% (= 1/v) of wealth in the speculative port-
folio and 50% (= 1 — 1/y) of wealth in the hedge bond; i.e. the portfolio composition
in this case is: 40% in the stock, 10% in the bank account, and 50% in the hedge
bond. The optimal asset allocations of investors with risk aversion parameters 1,
4/3, 2, 4, and infinity are tabulated in Table 1 in accordance with (28).

It can be noted that the asset allocations tabulated in Table 1 do not depend on
the time horizons of the investors; however, the appropriate hedge bonds differ
across investors that are heterogeneous with respect to both risk aversion and time
horizon. Moreover, the asset allocation choices in Table 1 do not depend on the form
of the current term structure, but the optimal payment schedules on the hedge bonds
do. Finally, it may be noted that if the relevant coupon bonds for hedging are not
explicitly available in the market, they can always be replicated by trading in any sin-
gle bond and the bank account within the Vasicek model.

We will consider the optimal payment schedules on the relevant hedge bonds in
three cases with different initial term structures of forward rates. These three forms
are given by setting the short-term interest rate equal to 0.01, 0.04, and 0.07, respec-
tively. The three forms of the initial term structure of forward interest rates are dis-
played in Fig. 1.

 Again, Brealey and Myers (1996, Chapter 7) tabulate the average historical excess return on
government bonds to be slightly higher, 1.4%, based on the Ibbotson Associates (1995) returns data.
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Table 1
Optimal asset allocations for investors with different degrees of relative risk aversion

Relative risk aversion

y=1 y:4/3 y= y=4 7y =00
Stock 80% 60% 40% 20% 0%
Bank account  20% 15% 10% 5% 0%
Hedge bond 0% 25% 50% 75% 100%

The optimal allocations are in accordance with (28), and relevant Vasicek model parameter values and
stock price parameter values are given in (32).

Note: The optimal asset allocations are identical for investors with different time horizons (7) and time
preference parameters (f5). The appropriate hedge bonds, however, differ across investor types. Also, the
relevant hedge bonds for the different investors in this table, which are heterogeneous with respect to
degree of relative risk aversion, are not identical.
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Fig. 1. Term structures of forward interest rates. The figure displays forward rates as a function of time to
maturity for different Vasicek term structures described by short interest rate levels of 0.01, 0.04, and 0.07,
respectively.

As formalized in Proposition 2, the forward-expected consumption pattern of the
agent is crucial for how the agent should optimally hedge against changes in interest
rates. The forward-expected consumption pattern and the forward-expected terminal
wealth of the agent are described by the expressions in (26) and (27). In particular,
the consumption pattern over time depends on the term structure of forward rates
through the occurrence of the zero-coupon price P(t,t) = exp(— [ f(t,5)ds) in the
expressions. Also, the consumption pattern over time depends on the prices on risk
in the economy through the expression for the variance of the log-pricing kernel,
g(t,s) as stated in Eq. (24). Using that the zero-coupon bond volatility is
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op(t,7) = — [T 64(t,u)du = 6,b(t — 1) and by evaluating the integrals in (24), one ob-
tains

I (b(s — 1))’

§(6,8) = (73 + )5 = 1) + 20 = O)(bls = ) = (s — 1)) — 22

(33)
The forward-expected consumption patterns are displayed in Fig. 2 for different
degrees of relative risk aversion, a subjective time discount rate of f = 0.03, and a
time horizon of 7' = 25 (years). The investors have initial wealth of W, = 100.

The consumption patterns in the figure describe the specific payment schedules for
the relevant coupon bonds that the different investors should use in order to hedge
against changes in the term structure of interest rates. The log-utility investors and
the infinitely risk averse investors are polar benchmark cases where either the de-
mand for the hedge bond is exactly 0% or exactly 100%. Investors in between these
two polar cases will invest a fraction of wealth between 0% and 100% in the specific
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Fig. 2. Expected consumption patterns with initial wealth Wy = 100 and time horizon T = 25. The figure dis-
plays the forward-expected consumption streams for four different levels of the relative risk aversion coef-
ficient y; panel (a): y = 1, panel (b): y = 2, panel (¢): y = 4, panel (d): y = oo. The three curves in each panel
correspond to the different initial forward rate curves displayed in Fig. 1. The dashed curve is for the up-
ward sloping term structure (» = 0.01), the thick solid curve is for the nearly flat term structure (» = 0.04),
and the thin solid curve is for the downward sloping term structure (» = 0.07). The present value of the
consumption policy must equal current wealth, and the discounted value of the forward-expected con-
sumption stream is thus in all cases W, = 100. Moreover, the current consumption-to-wealth ratios in per-
cent are described by the current, time ¢ = 0, consumption rates.
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bonds in order to hedge against changes in the opportunity set. For example, the
illustrated investors in Fig. 2(b) and (c) with relative risk aversion of 2 and 4 should
optimally invest 50% and 75% in their specific hedge bonds, cf. Table 1.

For a log-utility investor and for an investor with y = oo, the forward-expected
consumption and terminal wealth patterns only depend on the initial term structure
of interest rates, as described in the discussion following Proposition 2. In particular,
for y = oo the forward-expected consumption pattern is always flat, as displayed in
Fig. 2(d), while the forward-expected consumption pattern for a log-utility investor
in Fig. 2(a) depends on the subjective discount rate § and the specific form of the
current term structure. From (29) it follows that in the logarithmic utility case,
y = 1, the forward-expected consumption rate k(s) must satisfy

K (s) = (fils) = B)k(s)

and, hence, that the forward-expected consumption rate as a function of the time to
consumption is increasing whenever the forward rate is higher than the subjective
discount rate f = 0.03, and vice versa. Furthermore, the consumption-to-wealth
ratios are described by the current (time 1 = 0) consumption rates, and according to
Fig. 2(a) the current consumption-to-wealth ratios are identical across the three term
structure cases for the log-utility investors with Co/W, = 5.686/100 = 5.686%. On
the other hand, the optimal constant consumption rates that can be sustained by the
infinitely risk-averse investors are determined entirely by the current annuity bond
price which differs across the three term structure cases. The consumption pat-
terns for the investors in Fig. 2(b) and (c) are basically in between the two polar
benchmark cases of investors with logarithmic utility and infinitely risk-averse
investors.

4.2. A non-Markovian three-factor HIM model

This example features non-Markovian dynamics of the opportunity set. We con-
sider three different initial term structures of forward rates as input in the HIM mod-
eling approach. The relevant current term structures are adopted from the above
Vasicek example, as displayed in Fig. 1; the entire term structures of forward rates
in Fig. 1 are thus used as an input in the investment/consumption decision problem.

The term structure can basically exhibit three kinds of changes: a parallel level
change, a slope change, and a curvature change. Specifically, the forward rate vola-
tility structure is assumed to have the form

or(t,1) = — (01,06 g3 (r — t)e ™), 0<t<e<T. (34)

The dynamics of the forward rate curve is described by inserting the volatility
structure (34) in (18). In particular, a change in the Wiener process that governs
movements in the first factor will result in an equal change in all forward rates for
different maturities; hence, this causes a parallel level change of the forward curve.
Likewise, a change in the Wiener process that governs movements in the second
factor will significantly affect forward rates with short maturities but not forward
rates with long maturities, and this thus causes a slope change of the forward curve.
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Finally, a change in the Wiener process that governs movements in the third factor
will affect forward rates with medium maturities but neither forward rates with short
and long maturities, and this causes a change in the curvature of the forward curve.
The three factors are similar to the fundamental three components in the Nelson and
Siegel (1987) structural forms widely used in practice for calibration of term struc-
tures of interest rates and also consistent with the term structure factors determined
empirically by e.g. Litterman and Scheinkman (1991).

The volatility of any zero-coupon bond is described by 65(¢,7) = — [ o(t,u)du
and under the above specification of forward curve volatility we have

op(t,1) = <O’1 (t—1),00b5(7 — t),ﬁ (bs(t—t) — (v — t)e_’“(’_’))), (35)

K3

where b;(t) =L (1 —e™") for j =2,3.

As in the Vasicek example above, it is possible to determine the optimal forward-
expected consumption pattern and, hence, the relevant coupon bond for hedging
against changes in the opportunity set using the general results in Proposition 2. Be-
sides the form of the initial term structure of interest rates the variance of the (log)
pricing kernel, g(¢,s), determines the relevant consumption patterns in (26) and (27).
Straightforward calculations using (24) show that the analogy to (33) in the Vasicek

example is now given by

1
g(t,8) = (A + iy + 2y + 25)(s =) = Zman(s — 1) + 301 (s — 1)’

3
# (227 )t~ 500 2 s 07
(5 -28)e 02w
(3 (e o
_0_5(4;4%( —t)+;r<3(s—f) >(b3(s—f))2~ (36)

In the following, we will tabulate numerical results for three different sets of
parameters for the three-factor HIM model. Our base case set of parameters is
chosen such that the volatilities of short term and long term bonds as well as the
expected excess returns on stocks and bonds are of the same magnitude as in the
Vasicek example above. Below, we will comment further on how this is achieved but,
specifically, the parameter values in the base case are:

Ky =1.00, Kk3=0.50, o =0.00325 o,=0.01184, o3 =0.00869,
s = (0.03187,0.02305,0.04857)", a5, = 0.24206,
@ =0.05, Js=0.19365, 5= (0.02549,0.01844,0.03886)’. (37)
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In choosing the parameters in (37) we first fixed k, and k3, which determine the slope
effect and the curvature effect in the dynamics of the forward rate curve in (18). Our
rationale for choosing the specific parameter values is given below, but the following
numerical results are not sensitive to the specific parameter values used for x, and
i3. "% In the present context, the innovations in the forward curve are generated by a
three-dimensional Wiener process, wz = (wg1, W2, w33)'. As described above, an
innovation in wpg; affects all forward rates equally while e.g. an innovation in wg,
affects short rates but not very long rates. For example, x, = 1.00 implies that if an
innovation in wg, increases the spot rate with 100 basis point, the 1-year forward rate
is only increased by (100 x e~*>*! =) 36.79 basis points, and the 5-year forward rate
is only increased by 0.67 basis points; hence, an innovation in wp, will significantly
change the slope of the forward rate curve. Likewise, an innovation in wg; will not
affect the very near forward rates nor the very distant forward rates but will change
the curvature of the forward rate curve. The maximum amplitude in the forward rate
curve caused by an innovation in wp; occurs for a medium distant forward rate;
specifically, for x; = 0.50 the maximum amplitude occurs for the (1/x; =) 2-year
forward rate. Hence, the specific parameter values chosen for x, and x; are rea-
sonable in order to empirically capture what is usually referred to as a slope change
and a curvature change in the term structure, and this is the rationale for the specific
parameter choices.

While the parameters x, and k3 are specified exogenously, the forward rate vola-
tility parameters o4, 6,, and o3 are calibrated in order to ensure that the volatilities of
zero-coupon bonds with times to maturity equal to 0.25, 2, and 10 years, respec-
tively, are identical to those in the Vasicek example. ''Next, a5, and oy, are chosen
so that the volatility on the stock is 25% and so that the correlation coefficients be-
tween the stock and any of the three term structure factors are —25%, which corre-
sponds to the —25% correlation between the stock and the short-term interest rate in
the Vasicek example. Finally, risk premia are also calibrated to be comparable to
those in the Vasicek example. In particular, the expected excess return on the stock
is 5% while the risk premia on bonds, as reflected in /3, are calibrated so that there is
no speculative demand for bonds (also, ||4z]| = 0.05, as in the Vasicek example). 12
The portfolio choice of a logarithmic investor is, hence, to invest 80% of wealth in
the stock, 0% in bonds, and 20% in the bank account, as in the Vasicek example.
Likewise, other investors allocate the same fraction of wealth into the stock, the
bank account, and a hedge bond, as in the Vasicek example; cf. Table 1.

19 Numerical results based on alternative parameter values for x, and x3 (varied separately in intervals
from 0.10 to 10) are available from the authors by request.

' This is done by equating the relevant zero-coupon bond volatilities in (35) to those in the Vasicek
example, and thus basically solving three equations with respect to the three unknowns: oy, 0;, and o3.

12 This is achieved by choosing the three parameters in g so that there is no speculative demand for
bonds exposed alone to innovations in wgy, wg,, and wgs, respectively. In practice, the speculative demand
for these bonds, as described by the first term in (25), are equated to zero, and the three parameters in Az
are thus basically obtained by solving three equations with respect to these three parameters.
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The speculative demand for securities in this example is by construction exactly
similar to the speculative demand in the above Vasicek example. The way the inves-
tors want to hedge against changes in the opportunity set, however, may be quite dif-
ferent compared to the Vasicek case due to the more complex dynamics of the term
structure of interest rates in this HIM three-factor setting. In our view, a compari-
son between the hedge choice in the Vasicek example and in this HIM three-factor
setting using the base case parameters in (37) is relevant for addressing ques-
tions such as: (i) is the present form of the term structure of interest rates important
for how to hedge against changes in the opportunity set? and (ii) is the flexibility
and dynamics of the term structure of interest rates important for how to
hedge against changes in the opportunity set when the current term structure is kept
fixed?

As formalized in Proposition 2 the forward-expected consumption pattern is cru-
cial for the hedging behavior since the appropriate bond (or bond portfolio) for
hedging against changes in the opportunity set is one that has a payment schedule
similar to the optimal forward-expected consumption pattern. Hence, the questions
above can be answered by comparing the optimal consumption patterns across dif-
ferent scenarios. The first question, (i), can be addressed by looking at the diversity
of consumption patterns under different current term structures, but under the same
fundamental model of interest rate dynamics. (Such results have already been pre-
sented in the above numerical analysis under Vasicek interest rate dynamics.) The
second question, (ii), can be addressed by looking at the diversity of consumption
patterns under different term structure dynamics, but by using the same current term
structure as input in the analysis. This is done below where we make numerical com-
parisons across the Vasicek model and the HIM three-factor model when the same
current term structure of forward rates applies; in particular, this analysis is based on
using the entire Vasicek term structures of forward rates exhibited in Fig. 1 as input
current term structures in the HJM three-factor model.

The optimal consumption patterns are tabulated in Table 2 for investors with de-
grees of relative risk aversion equal to 1, 4/3, 2, 4, and infinity so that the different
investors invest 0%, 25%, 50%, 75%, and 100%, respectively, in their appropriate
hedge bonds; cf. Table 1. As in the Vasicek example, the investors have an investment
horizon of 25 years, a subjective time discount rate of = 0.03, and they equally
weight utility from intermediate consumption and final wealth, i.e. K = % in the gen-
eral utility function specification in (1). The investors have initial wealth W, = 100.

The forward-expected consumption patterns for the Vasicek dynamics are exactly
identical to those displayed in Fig. 2 in the Vasicek example above. The forward-
expected consumption patterns for the HIM three-factor model are for the bench-
mark parameters in (37) and by using the Vasicek forward rate term structures in
Fig. 1 as separate current term structure inputs. '* Also, as discussed in relation to

13 The relevant Vasicek input forward rate term structures are given in analytical form by (31). The
tabulated forward rates in Table 2 basically represent single points on the entire term structure of forward
rates which constitutes the input to the analysis.



Table 2
Forward-expected consumption rates (i.e. payment schedules for the relevant coupon bonds to hedge changes in the opportunity set) for investors with initial
wealth W, = 100, T = 25, f =0.03, K = 1/2, and different degrees of relative risk aversion

Time Forward y=1 y=4/3 y=2 y=4 y =00
rate Vasicek HIM Vasicek HIM Vasicek HIM Vasicek HIM Vasicek HIM

Vasicek term structure of forward rates with short interest rate, r, equal to 0.01

0.00 0.0100 5.686 5.686 5.883 5.883 5.929 5.928 5.824 5.824 5.576 5.576
5.00 0.0271 5.404 5.404 5.562 5.561 5.644 5.641 5.649 5.647 5.576 5.576
10.00 0.0342 5.434 5.434 5.487 5.486 5.527 5.526 5.557 5.556 5.576 5.576
15.00 0.0373 5.598 5.598 5.510 5.511 5.476 5.477 5.498 5.500 5.576 5.576
20.00 0.0387 5.830 5.830 5.577 5.580 5.453 5.456 5.453 5.455 5.576 5.576
25.00 0.0394 6.102 6.102 5.665 5.667 5.442 5.445 5.413 5.416 5.576 5.576

Vasicek term structure of forward rates with short interest rate, r, equal to 0.04

0.00 0.0400 5.686 5.686 6.086 6.086 6.342 6.341 6.442 6.442 6.384 6.384
5.00 0.0412 6.005 6.005 6.228 6.226 6.364 6.361 6.415 6.413 6.384 6.384
10.00 0.0409 6.347 6.347 6.378 6.377 6.390 6.388 6.390 6.389 6.384 6.384
15.00 0.0405 6.695 6.695 6.519 6.520 6.406 6.407 6.360 6.361 6.384 6.384
20.00 0.0402 7.050 7.050 6.653 6.657 6.414 6.418 6.325 6.328 6.384 6.384
25.00 0.0401 7.418 7.418 6.784 6.787 6.418 6.422 6.288 6.291 6.384 6.384

Vasicek term structure of forward rates with short interest rate, r, equal to 0.07

0.00 0.0700 5.686 5.686 6.295 6.294 6.778 6.778 7.114 7.113 7.285 7.285
5.00 0.0554 6.673 6.673 6.972 6.970 7.170 7.167 7.273 7.271 7.285 7.285
10.00 0.0476 7.414 7.414 7.413 7.411 7.381 7.379 7.336 7.334 7.285 7.285
15.00 0.0434 8.006 8.006 7.711 7.712 7.487 7.489 7.344 7.345 7.285 7.285
20.00 0.0417 8.525 8.525 7.936 7.940 7.539 7.544 7.324 7.328 7.285 7.285
25.00 0.0408 9.017 9.017 8.124 8.128 7.563 7.568 7.290 7.294 7.285 7.285

Initial term structures of forward rates are from the Vasicek model with » = 1%, 4%, and 7%. Payment schedules are tabulated for both the Vasicek and the
HJM three-factor term structure dynamics. Relevant parameter values are given in (32) and (37), respectively. The current consumption to wealth ratios in
percent are described by the time ¢ = 0 consumption rates.
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Fig. 2, the present value of the optimal consumption streams equal #;, = 100 for all
investors represented in the table. Furthermore, the consumption-to-wealth ratios
are described by the current, time ¢ = 0, consumption rates; e.g. Co/Wy = 5.686%
for a log-utility investor in all term structure cases. As noted earlier, the results
for log-utility investors and infinitely risk-averse investors in Table 2 are exactly
identical since the forward-expected consumption patterns of these investors depend
only on the current form of the term structure of interest rates. However, also for
investors with relative risk aversion in between these benchmark investors the differ-
ences between the consumption patterns in the Vasicek example and in the base case
HJM three-factor model are small. A conclusion that can be drawn from observing
similar forward-expected consumption patterns from the Vasicek example and the
base case HIM three-factor model is that investors need not care about the dynamics
of the term structure of interest rates since in both cases the investors should hedge
against changes in the investment opportunity set by basically buying the same cou-
pon bond. '* On the other hand, the current form of the term structure is important
for the optimal consumption patterns of the investors and is, hence, important for
the precise payment schedule of the relevant bond for hedging against changes in
the opportunity set as reflected in the clear diversity in consumption patterns across
different current term structure cases in Table 2.

In Table 3 we have tabulated results for two other sets of parameter values for the
HIJM three-factor model.

In the discussion of Proposition 1, it was noted that optimal consumption choices
are only altered if one changes the parameters that enter the dynamics (or particular
moments) of the pricing kernel process. Therefore, changing e.g. the volatilities ag;
and o5, of the investment assets will have no consequences for the optimal for-
ward-expected consumption pattern and, hence, no consequences for the relevant
coupon bond to hedge against changes in the opportunity set. On the other hand,
if one changes risk premia or parameter values in the description of the term struc-
ture dynamics, the optimal consumption pattern will in general be affected. There-
fore, we only consider two other sets of parameters: one in which forward-rate
volatility parameters are changed and one in which risk premia parameters are chan-
ged.

The two sets of alternative parameters considered in Table 3 are:

Ky =1.00, x3=050, o =0.00650, o,=0.02367, o3=0.01738,
s = (0.03187,0.02305,0.04857), 05, = 0.24206,
05 =005, Js=0.19365, iz = (0.02549,0.01844,0.03886)’ (38)

Y If the relevant hedge bonds are not explicitly available in the market, they must be replicated. As a
qualifier to this conclusion, it may then be noted that the replication strategies vary across the considered
models. For example, in the case of the Vasicek model the investor can replicate the hedge bond by trading
in the bank account and in a single bond. In the HIM model, three bonds are required.



Table 3
Forward-expected consumption rates (i.e. payment schedules for the relevant coupon bonds to hedge changes in the opportunity set) for investors with initial
wealth W, = 100, T = 25, $ =0.03, K = 1/2, and different degrees of relative risk aversion

Time Forward y=4/3 y=2 y=4
rate HIM-1 HIM-2 HIM-3 HIM-1 HIM-2 HIM-3 HIM-1 HIM-2 HIM-3

Vasicek term structure of forward rates with short interest rate, r, equal to 0.01

0.00 0.0100 5.883 5.894 5.669 5.928 5.943 5.645 5.824 5.834 5.614

5.00 0.0271 5.561 5.572 5.456 5.641 5.657 5.502 5.647 5.658 5.542
10.00 0.0342 5.486 5.495 5.475 5.526 5.537 5.512 5.556 5.565 5.546
15.00 0.0373 5.511 5.511 5.590 5.477 5.476 5.584 5.500 5.498 5.579
20.00 0.0387 5.580 5.559 5.751 5.456 5.429 5.682 5.455 5.435 5.624
25.00 0.0394 5.667 5.611 5.932 5.445 5.372 5.789 5.416 5.362 5.671
Fisher—Weil duration: 10.73 10.71 10.89 10.62 10.60 10.84 10.64 10.62 10.80

Vasicek term structure of forward rates with short interest rate, r, equal to 0.04

0.00 0.0400 6.086 6.097 5.867 6.341 6.356 6.043 6.442 6.453 6.216

5.00 0.0412 6.226 6.239 6.111 6.361 6.378 6.209 6.413 6.426 6.300
10.00 0.0409 6.377 6.387 6.365 6.388 6.401 6.377 6.389 6.399 6.383
15.00 0.0405 6.520 6.519 6.615 6.407 6.405 6.537 6.361 6.359 6.459
20.00 0.0402 6.657 6.631 6.862 6.418 6.385 6.689 6.328 6.304 6.529
25.00 0.0401 6.787 6.720 7.107 6.422 6.336 6.832 6.291 6.227 6.592
Fisher—Weil duration: 10.64 10.62 10.80 10.44 10.42 10.66 10.37 10.35 10.53

Vasicek term structure of forward rates with short interest rate, r, equal to 0.07

0.00 0.0700 6.294 6.306 6.070 6.778 6.793 6.464 7.113 7.125 6.870

5.00 0.0554 6.970 6.985 6.843 7.167 7.186 7.002 7.271 7.285 7.149
10.00 0.0476 7.411 7.423 7.399 7.379 7.394 7.372 7.334 7.345 7.334
15.00 0.0434 7.712 7.711 7.827 7.489 7.486 7.647 7.345 7.343 7.466
20.00 0.0417 7.940 7.909 8.187 7.544 7.505 7.868 7.328 7.299 7.568
25.00 0.0408 8.128 8.046 8.512 7.568 7.466 8.058 7.294 7.220 7.650
Fisher—Weil duration: 10.55 10.53 10.71 10.26 10.24 10.48 10.10 10.08 10.26

Initial term structures of forward rates are from the Vasicek model with » = 1%, 4%, and 7% (as displayed in Fig. 1). Payment schedules are tabulated for the
HIM three-factor term structure dynamics and for the three different sets of parameter values given in (37)-(39). The current consumption to wealth ratios in
percent are described by the time ¢ = 0 consumption rates.
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and

ky =1.00, x3=0.50, o;=0.00325, o, =0.01184, a3 =0.00869,

as1 = (0.03187,0.02305,0.04857)", a5, = 0.24206,

¢s =0, is=0, 25=1(0,0,0), (39)
respectively.

The parameter set in (38) differs from the base set of parameters in (37) alone by
higher volatilities on the forward rate curve; specifically, the parameters in (38) are
chosen so that the volatilities on zero-coupon bonds with time to maturity equal to
0.25, 2, and 10 years, respectively, are exactly twice as large as in the HIM base case
parameters set and, hence, twice as large as in the Vasicek example. The speculative
demands for stocks and bonds are similar to those in the base case, i.e. a logarithmic
utility investor invests an 80% fraction of wealth in the stock, 0% in bonds, and 20%
in the bank account.

The parameter set in (39) differs from the base set of parameters in (37) alone by
having zero prices on risk so that the speculative demands for stocks and bonds are
zero, i.e. a logarithmic utility investor in this case invests a 0% fraction of wealth in
the stock, 0% in bonds, and 100% in the bank account.

The optimal forward-expected consumption patterns in the HIM three-factor
example with the above parameter choices are tabulated in Table 3 under the labels
“HIJM-2" and “HJIM-3"", respectively. The optimal forward-expected consumption
patterns for the benchmark parameter set in (37) are identical to those in Table 2
and tabulated under the label “HJM-1" in Table 3. For the polar cases of log-utility
investors and infinitely risk averse investors the optimal consumption patterns are
unaltered across the different parameter sets since they only depend on the initial
form of the term structure; these cases are, therefore, not tabulated in Table 3.

For investors with preferences in between the polar cases of logarithmic utility
and infinite risk aversion, the forward-expected consumption patterns depend on
the specific set of parameters applied, as can be seen from Table 3. Nevertheless,
it seems that the optimal consumption patterns do not change dramatically across
the different parameter sets. In particular, the consumption patterns in the case of
higher forward rate volatilities are basically similar to those in the benchmark
parameter case (37) and in the Vasicek example.

In order to have an objective measure of the distance between the different con-
sumption plans in Table 3 and, hence, of the relevant bonds to hedge against changes
in the opportunity set, we have also tabulated Fisher—Weil durations in Table 3. The
Fisher—Weil duration measure is in this context defined by

["(s = )k(s)P.(s) ds + (T — O)k(T)P(T)
J! k(s)P(s) ds + k(T)P(T)

and is a measure of the average time to the payments of any particular bond. Even
for the case of zero risk premia, the durations of the relevant coupon bonds for
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hedging against changes in the opportunity set seem close to the relevant durations
implied by the other parameter sets considered in Table 3.

5. Conclusion

This paper has provided a characterization of the solution to a general intertem-
poral consumption and investment problem in a dynamically complete market. We
have provided explicit results showing how to hedge against changes in the invest-
ment opportunity set in the case of multi-factor Gaussian HIM interest rates and
deterministic market prices of risk. In particular, it was demonstrated that changes
in the investment opportunity set can be hedged by a single bond: a zero-coupon
bond for the case of utility from terminal wealth only and a continuous-coupon
bond that equals the forward-expected consumption pattern in the case of utility
from intermediate consumption. Explicit numerical examples featuring non-Mar-
kovian term structure dynamics suggested that the current form of the term structure
of interest rates is important for the optimal consumption pattern and, hence, has
important consequences for the appropriate hedge bond, while the specific dynamics
of the term structure are of minor importance.
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